Reevaluation of a tetraploid wheat population indicates that the Tsn1-ToxA interaction is the only factor governing Stagonospora nodorum blotch susceptibility.

نویسندگان

  • Justin D Faris
  • Timothy L Friesen
چکیده

The wheat Tsn1 gene on chromosome 5B confers sensitivity to a host-selective toxin produced by the pathogens that cause tan spot and Stagonospora nodorum blotch (SNB) known as Ptr ToxA and SnToxA, respectively (hereafter referred to as ToxA). A compatible Tsn1-ToxA interaction is known to play a major role in conferring susceptibility of hexaploid (common) wheat to SNB. However, a recent study by another group suggested that the Tsn1-ToxA interaction was not relevant in conferring susceptibility of the tetraploid (durum) wheat cv. Langdon (LDN). Here, we reevaluated the role of the Tsn1-ToxA interaction in governing SNB susceptibility using the same mapping population and Stagonospora nodorum isolate (Sn2000) as were used in the previous study. Results of our quantitative trait locus analysis showed that the Tsn1 locus accounted for 95% of the variation in SNB. In addition, inoculation of the mapping population with two ToxA-knockout strains of Sn2000 revealed that the entire population was resistant. Furthermore, several LDN Tsn1-disrupted mutants were evaluated and found to be resistant to SNB. Together, these results prove unequivocally that Tsn1 is the only factor present along chromosome 5B that governs response to SNB in this population and that a compatible Tsn1-ToxA interaction is necessary for the manifestation of disease. Therefore, the results from the previous study are refuted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system.

The wheat tan spot fungus (Pyrenophora tritici-repentis) produces a well-characterized host-selective toxin (HST) known as Ptr ToxA, which induces necrosis in genotypes that harbor the Tsn1 gene on chromosome 5B. In previous work, we showed that the Stagonospora nodorum isolate Sn2000 produces at least 2 HSTs (SnTox1 and SnToxA). Sensitivity to SnTox1 is governed by the Snn1 gene on chromosome ...

متن کامل

New Insights into the Roles of Host Gene-Necrotrophic Effector Interactions in Governing Susceptibility of Durum Wheat to Tan Spot and Septoria nodorum Blotch

Tan spot and Septoria nodorum blotch (SNB) are important diseases of wheat caused by the necrotrophic fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively. The P. tritici-repentis necrotrophic effector (NE) Ptr ToxB causes tan spot when recognized by the Tsc2 gene. The NE ToxA is produced by both pathogens and has been associated with the development of both tan spot an...

متن کامل

SnTox5-Snn5: a novel Stagonospora nodorum effector-wheat gene interaction and its relationship with the SnToxA-Tsn1 and SnTox3-Snn3-B1 interactions.

The Stagonospora nodorum-wheat interaction involves multiple pathogen-produced necrotrophic effectors that interact directly or indirectly with specific host gene products to induce the disease Stagonospora nodorum blotch (SNB). Here, we used a tetraploid wheat mapping population to identify and characterize a sixth effector-host gene interaction in the wheat-S. nodorum system. Initial characte...

متن کامل

A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens.

Plant disease resistance is often conferred by genes with nucleotide binding site (NBS) and leucine-rich repeat (LRR) or serine/threonine protein kinase (S/TPK) domains. Much less is known about mechanisms of susceptibility, particularly to necrotrophic fungal pathogens. The pathogens that cause the diseases tan spot and Stagonospora nodorum blotch on wheat produce effectors (host-selective tox...

متن کامل

New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch.

Stagonospora nodorum blotch (SNB) is a significant disease in some wheat-growing regions of the world. Resistance in wheat to Stagonospora nodorum is complex, whereby genes for seedling, flag leaf, and glume resistance are independent. The aims of this study were to identify alternative genes for flag leaf resistance, to compare and contrast with known quantitative trait loci (QTL) for SNB resi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 99 8  شماره 

صفحات  -

تاریخ انتشار 2009